精彩推荐
您现在的位置: > 首页 >> 工作做法 > 理论研究 > 正文
2019中国森林旅游节
 

Climate change rapidly warming world's lakes

媒体:State University  作者:Washington
专业号:灞上人家 2015/12/18 13:47:12

Climate change rapidly warming world's lakes

More than half world's freshwater supplies measured

Date:December 16, 2015

Source:Washington State University

Summary:Climate change is rapidly warming lakes around the world, threatening freshwater supplies and ecosystems, according to a study spanning six continents. The study is the largest of its kind and the first to use a combination of satellite temperature data and long-term ground measurements. A total of 235 lakes, representing more than half of the world's freshwater supply, were monitored for at least 25 years.

 

Lakes are warming at a global average of 0.61 degrees F per decade (0.34 degrees C per decade).

Credit: Illinois State University/USGS/California University of Pennsylvania

Climate change is rapidly warming lakes around the world, threatening freshwater supplies and ecosystems, according to a study spanning six continents.

The study is the largest of its kind and the first to use a combination of satellite temperature data and long-term ground measurements. A total of 235 lakes, representing more than half of the world's freshwater supply, were monitored for at least 25 years. The research, published in Geophysical Research Letters, was announced today at the American Geophysical Union meeting.

The study, which was funded by NASA and the National Science Foundation, found lakes are warming an average of 0.61 degrees Fahrenheit (0.34 degrees Celsius) each decade. That's greater than the warming rate of either the ocean or the atmosphere, and it can have profound effects, the scientists say.

Algal blooms, which can ultimately rob water of oxygen, are projected to increase 20 percent in lakes over the next century as warming rates increase. Algal blooms that are toxic to fish and animals would increase by 5 percent. If these rates continue, emissions of methane, a greenhouse gas 25 times more powerful than carbon dioxide on 100-year time scales, will increase 4 percent over the next decade.

"Society depends on surface water for the vast majority of human uses," said co-author Stephanie Hampton, director of Washington State University's Center for Environmental Research, Education and Outreach in Pullman. "Not just for drinking water, but manufacturing, for energy production, for irrigation of our crops. Protein from freshwater fish is especially important in the developing world."

The temperature of water influences a host of its other properties critical to the health and viability of ecosystems. When temperature swings quickly and widely from the norm, life forms in a lake can change dramatically and even disappear.

"'These results suggest that large changes in our lakes are not only unavoidable, but are probably already happening," said lead author Catherine O'Reilly, associate professor of geology at Illinois State University, Normal. Earlier research by O'Reilly has seen declining productivity in lakes with rising temperatures.

Temperature increases close to or above the average .61 degrees F rise were seen in some of the world's most popular waters, including Lake Tahoe ( .97 F by hand, 1.28 by satellite), the Dead Sea ( 1.13 F), two reservoirs serving New York City, Seattle's Lake Washington ( .49 F), and the Great Lakes Huron ( 1.53 F by hand, .79 by satellite), Michigan ( .76 F by hand, .36 by satellite), Ontario ( .59 F) and Superior ( 2.09 F by hand measurement, 1.44 F by satellite).

Study co-author Simon Hook, science division manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif., said satellite measurements provide a broad view of lake temperatures over the entire globe. But they only measure surface temperature, while hand measurements can detect temperature changes throughout a lake. Also, while satellite measurements go back 30 years, some lake measurements go back more than a century.

"Combining the ground and satellite measurements provides the most comprehensive view of how lake temperatures are changing around the world," he said.

The researchers said various climate factors are associated with the warming trend. In northern climates, lakes are losing their ice cover earlier, and many areas of the world have less cloud cover, exposing their waters more to the sun's warming rays.

Previous work by Hook using satellite data indicated that many lake temperatures were warming faster than air temperature and that the greatest warming was observed at high latitudes, as seen in other climate warming studies. This new research confirmed those observations, with average warming rates of 1.3 degrees Fahrenheit (0.72 degrees Celsius) per decade at high latitudes.

Warm-water, tropical lakes may be seeing less dramatic temperature increases, but increased warming of these lakes can still have large negative impacts on fish. That can be particularly important in the African Great Lakes, where fish is an important source of food.

"We want to be careful that we don't dismiss some of these lower rates of change," said Hampton. "In warmer lakes, those temperature changes can be really important. They can be just as important as a higher rate of change in a cooler lake."

In general, the researchers write, "The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes."

The study exemplifies the interdisciplinary work of WSU's Grand Challenges, areas of research addressing some of society's most complex issues. The study is also in keeping with the theme of the challenge "Sustainable Resources: Food, Energy, and Water," which will develop strategies that link optimized agricultural practices, water management, and energy production

Story Source:

The above post is reprinted from materials provided by Washington State University. The original item was written by Eric Sorensen. Note: Materials may be edited for content and length.

Journal Reference:

C. M. O'Reilly et al. Rapid and highly variable warming of lake surface waters around the globeGeophysical Research Letters, 2015 DOI: 10.1002/2015GL066235

阅读 688
会员信息
我也说两句
E-File帐号:用户名: 密码: [注册]
评论:(内容不能超过500字。)

*评论内容将在30分钟以后显示!
版权声明:
1.依据《服务条款》,本网页发布的原创作品,版权归发布者(即注册用户)所有;本网页发布的转载作品,由发布者按照互联网精神进行分享,遵守相关法律法规,无商业获利行为,无版权纠纷。
2.本网页是第三方信息存储空间,阿酷公司是网络服务提供者,服务对象为注册用户。该项服务免费,阿酷公司不向注册用户收取任何费用。
  名称:阿酷(北京)科技发展有限公司
  联系人:李女士,QQ468780427
  网络地址:www.arkoo.com
3.本网页参与各方的所有行为,完全遵守《信息网络传播权保护条例》。如有侵权行为,请权利人通知阿酷公司,阿酷公司将根据本条例第二十二条规定删除侵权作品。